107 research outputs found

    Cascaded H-bridge multilevel converter multistring topology for large scale photovoltaic systems

    Get PDF
    Large scale grid connected photovoltaic (PV) energy conversion systems have reached the megawatt level. This imposes new challenges on existing grid interface converter topologies and opens new opportunities to be explored. In this paper a new medium voltage multilevel-multistring configuration is introduced based on a three-phase cascaded H-bridge (CHB) converter and multiple string dc-dc converters. The proposed configuration enables a large increase of the total capacity of the PV system, while improving power quality and efficiency. The converter structure is very flexible and modular since it decouples the grid converter from the PV string converter, which allows to accomplish independent control goals. The main challenge of the proposed configuration is to handle the inherent power imbalances that occur not only between the different cells of one phase of the converter but also between the three phases. The control strategy to deal with these imbalances is also introduced in this paper. Simulation results of a 7-level CHB for a multistring PV system are presented to validate the proposed topology and control method

    Hardware-in-the-loop to test an mppt technique of solar photovoltaic system: A support vector machine approach

    Get PDF
    Indexación ScopusThis paper proposes a new method for maximum power point tracking (MPPT) of the photovoltaic (PV) system while using a DC-DC boost converter. The conventional perturb and observe (P&O) method has a fast tracking response, but it presents oscillation around the maximum power point (MPP) in steady state. Therefore, to satisfy transient and steady-state responses, this paper presents a MPPT method using support vector machines (SVMs). The use of SVM will help to improve the tracking speed of maximum power point of the PV system without oscillations near MPP. A boost converter is used to implement the MPPT method, where the input voltage of the DC-DC converter is regulated using a double loop where the inner loop is a current control that is based on passivity. The MPPT structure is validated by hardware in the loop, a real time and high-speed simulator (PLECS RT Box 1), and a digital signal controller (DSC) are used to model the PV system and implement the control strategies, respectively. The proposed strategy presents low complexity and it is implemented in a commercial low-cost DSC (TI 28069M). The performance of the MPPT proposed is presented under challenging experimental profiles with solar irradiance and temperature variations across the panel. In addition, the performance of the proposed method is compared with the P&O method, which is traditionally most often used in MPPT under demanding tests, in order to demonstrate the superiority of the strategy presented. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.https://www.mdpi.com/2071-1050/13/6/300

    Preselection algorithm based on predictive control for direct matrix converter

    Get PDF
    This paper presents an enhanced predictive control strategy to reduce the calculation effort for direct matrix converters. The main idea is to preselect the switching states to decrease the calculation effort during each sample period. The proposed preselection algorithm enables a predefined cost function to consider only the preselected switching states to perform the expected control. On the basis of the preselection of switching states at each sample period, the proposed method can effectively reduce the calculation effort as well as show a good performance. The proposed predictive control scheme using only preselected switching states needed to generate the desired source/load current waveforms and control the input power factor. The feasibility of the proposed method is experimentally verified and results are presented in the paper

    Upravljanje asimetričnim inverterom ujednačenog koraka s 13 razina korištenjem optimizacije roja čestica

    Get PDF
    Harmonic Elimination Strategy (HES) has been a widely researched alternative to traditional PWM techniques. This paper presents the harmonic elimination strategy of a Uniform Step Asymmetrical Multilevel Inverter (USAMI) using Particle Swarm Optimization (PSO) which eliminates specified higher order harmonics while maintaining the required fundamental voltage. This method can be applied to USAMI with any number of levels. As an example, in this paper a 13-level USAMI is considered and the optimum switching angles are calculated to eliminate the 5th, 7th, 11th, 13th and 17th harmonics. The HES-PSO approach is compared to the well-known Sinusoidal Pulse-Width Modulation (SPWM) strategy. Simulation results demonstrate the better performances and technical advantages of the HES-PSO controller in feeding an asynchronous machine. Indeed, the harmonic distortions are efficiently cancelled providing thus an optimized control signal for the asynchronous machine. Moreover, the technique presented here substantially reduces the torque undulations.Strategija eliminacije harmonika je dobro istražena alternativa tradicionalnoj pulso-širinskoj modulaciji. U ovom radu opisana je strategija eliminacije harmonika asimetričnog višerazinskog invertera ujednačenog koraka uz korištenje optimizacije roja čestica čime se eliminiraju harmonici višeg reda uz zadržavanje fundamentalnog napona. Takva metoda može se primijeniti neovisno o broju razina invertera. Kao primjer korišten je inverter s 13 razina kod kojeg se eliminiraju peti, sedmi, jedanaesti, trinaesti i sedamnaesti harmonik. Predloženo rješenje uspoređeno je s dobro poznatom sinusnom pulsno-širinskom modulacijom. Simulacijski rezultati pokazuju prednosti predloženog rješenja. Harmonička distorzija je uspješno poništena te je upravljački signal za asinkroni stroj optimalan. Štoviše, predložena tehnika znatno smanjuje promjene momenta

    Oral tolerance inhibits pulmonary eosinophilia in a cockroach allergen induced model of asthma: a randomized laboratory study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antigen desensitization through oral tolerance is becoming an increasingly attractive treatment option for allergic diseases. However, the mechanism(s) by which tolerization is achieved remain poorly defined. In this study we endeavored to induce oral tolerance to cockroach allergen (CRA: a complex mixture of insect components) in order to ameliorate asthma-like, allergic pulmonary inflammation.</p> <p>Methods</p> <p>We compared the pulmonary inflammation of mice which had received four CRA feedings prior to intratracheal allergen sensitization and challenge to mice fed PBS on the same time course. Respiratory parameters were assessed by whole body unrestrained plethysmography and mechanical ventilation with forced oscillation. Bronchoalveolar lavage fluid (BAL) and lung homogenate (LH) were assessed for cytokines and chemokines by ELISA. BAL inflammatory cells were also collected and examined by light microscopy.</p> <p>Results</p> <p>CRA feeding prior to allergen sensitization and challenge led to a significant improvement in respiratory health. Airways hyperreactivity measured indirectly via enhanced pause (Penh) was meaningfully reduced in the CRA-fed mice compared to the PBS fed mice (2.3 ± 0.4 vs 3.9 ± 0.6; p = 0.03). Directly measured airways resistance confirmed this trend when comparing the CRA-fed to the PBS-fed animals (2.97 ± 0.98 vs 4.95 ± 1.41). This effect was not due to reduced traditional inflammatory cell chemotactic factors, Th2 or other cytokines and chemokines. The mechanism of improved respiratory health in the tolerized mice was due to significantly reduced eosinophil numbers in the bronchoalveolar lavage fluid (43300 ± 11445 vs 158786 ± 38908; p = 0.007) and eosinophil specific peroxidase activity in the lung homogenate (0.59 ± 0.13 vs 1.19 ± 0.19; p = 0.017). The decreased eosinophilia was likely the result of increased IL-10 in the lung homogenate of the tolerized mice (6320 ± 354 ng/mL vs 5190 ± 404 ng/mL, p = 0.02).</p> <p>Conclusion</p> <p>Our results show that oral tolerization to CRA can improve the respiratory health of experimental mice in a CRA-induced model of asthma-like pulmonary inflammation by reducing pulmonary eosinophilia.</p
    corecore